ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0mmoeu Structured version   GIF version

Theorem n0mmoeu 3231
Description: A case of equivalence of "at most one" and "only one". If a class is inhabited, that class having at most one element is equivalent to it having only one element. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0mmoeu (x x A → (∃*x x A∃!x x A))
Distinct variable group:   x,A

Proof of Theorem n0mmoeu
StepHypRef Expression
1 exmoeu2 1945 1 (x x A → (∃*x x A∃!x x A))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wex 1378   wcel 1390  ∃!weu 1897  ∃*wmo 1898
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator