Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulsubfacd | GIF version |
Description: Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018.) |
Ref | Expression |
---|---|
mulsubfacd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulsubfacd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulsubfacd | ⊢ (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulsubfacd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | ax-1cn 6977 | . . . 4 ⊢ 1 ∈ ℂ | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) |
4 | mulsubfacd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | 1, 3, 4 | subdird 7412 | . 2 ⊢ (𝜑 → ((𝐴 − 1) · 𝐵) = ((𝐴 · 𝐵) − (1 · 𝐵))) |
6 | 4 | mulid2d 7045 | . . 3 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
7 | 6 | oveq2d 5528 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) − (1 · 𝐵)) = ((𝐴 · 𝐵) − 𝐵)) |
8 | 5, 7 | eqtr2d 2073 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 (class class class)co 5512 ℂcc 6887 1c1 6890 · cmul 6894 − cmin 7182 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-setind 4262 ax-resscn 6976 ax-1cn 6977 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-addcom 6984 ax-mulcom 6985 ax-addass 6986 ax-mulass 6987 ax-distr 6988 ax-i2m1 6989 ax-1rid 6991 ax-0id 6992 ax-rnegex 6993 ax-cnre 6995 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 df-riota 5468 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-sub 7184 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |