ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsubfacd GIF version

Theorem mulsubfacd 7415
Description: Multiplication followed by the subtraction of a factor. (Contributed by Alexander van der Vekens, 28-Aug-2018.)
Hypotheses
Ref Expression
mulsubfacd.1 (𝜑𝐴 ∈ ℂ)
mulsubfacd.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
mulsubfacd (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵))

Proof of Theorem mulsubfacd
StepHypRef Expression
1 mulsubfacd.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 ax-1cn 6977 . . . 4 1 ∈ ℂ
32a1i 9 . . 3 (𝜑 → 1 ∈ ℂ)
4 mulsubfacd.2 . . 3 (𝜑𝐵 ∈ ℂ)
51, 3, 4subdird 7412 . 2 (𝜑 → ((𝐴 − 1) · 𝐵) = ((𝐴 · 𝐵) − (1 · 𝐵)))
64mulid2d 7045 . . 3 (𝜑 → (1 · 𝐵) = 𝐵)
76oveq2d 5528 . 2 (𝜑 → ((𝐴 · 𝐵) − (1 · 𝐵)) = ((𝐴 · 𝐵) − 𝐵))
85, 7eqtr2d 2073 1 (𝜑 → ((𝐴 · 𝐵) − 𝐵) = ((𝐴 − 1) · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wcel 1393  (class class class)co 5512  cc 6887  1c1 6890   · cmul 6894  cmin 7182
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262  ax-resscn 6976  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-sub 7184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator