ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqpru Structured version   GIF version

Theorem mulnqpru 6548
Description: Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
Assertion
Ref Expression
mulnqpru ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝑋 (2nd ‘(A ·P B))))

Proof of Theorem mulnqpru
Dummy variables v w x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 6385 . . . . . . 7 ((y Q z Q w Q) → (y <Q z ↔ (w ·Q y) <Q (w ·Q z)))
21adantl 262 . . . . . 6 (((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) (y Q z Q w Q)) → (y <Q z ↔ (w ·Q y) <Q (w ·Q z)))
3 prop 6457 . . . . . . . . 9 (A P → ⟨(1stA), (2ndA)⟩ P)
4 elprnqu 6464 . . . . . . . . 9 ((⟨(1stA), (2ndA)⟩ P 𝐺 (2ndA)) → 𝐺 Q)
53, 4sylan 267 . . . . . . . 8 ((A P 𝐺 (2ndA)) → 𝐺 Q)
65ad2antrr 457 . . . . . . 7 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → 𝐺 Q)
7 prop 6457 . . . . . . . . 9 (B P → ⟨(1stB), (2ndB)⟩ P)
8 elprnqu 6464 . . . . . . . . 9 ((⟨(1stB), (2ndB)⟩ P 𝐻 (2ndB)) → 𝐻 Q)
97, 8sylan 267 . . . . . . . 8 ((B P 𝐻 (2ndB)) → 𝐻 Q)
109ad2antlr 458 . . . . . . 7 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → 𝐻 Q)
11 mulclnq 6360 . . . . . . 7 ((𝐺 Q 𝐻 Q) → (𝐺 ·Q 𝐻) Q)
126, 10, 11syl2anc 391 . . . . . 6 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → (𝐺 ·Q 𝐻) Q)
13 simpr 103 . . . . . 6 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → 𝑋 Q)
14 recclnq 6376 . . . . . . 7 (𝐻 Q → (*Q𝐻) Q)
1510, 14syl 14 . . . . . 6 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → (*Q𝐻) Q)
16 mulcomnqg 6367 . . . . . . 7 ((y Q z Q) → (y ·Q z) = (z ·Q y))
1716adantl 262 . . . . . 6 (((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) (y Q z Q)) → (y ·Q z) = (z ·Q y))
182, 12, 13, 15, 17caovord2d 5612 . . . . 5 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 ↔ ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) <Q (𝑋 ·Q (*Q𝐻))))
19 mulassnqg 6368 . . . . . . . 8 ((𝐺 Q 𝐻 Q (*Q𝐻) Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
206, 10, 15, 19syl3anc 1134 . . . . . . 7 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
21 recidnq 6377 . . . . . . . . 9 (𝐻 Q → (𝐻 ·Q (*Q𝐻)) = 1Q)
2221oveq2d 5471 . . . . . . . 8 (𝐻 Q → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
2310, 22syl 14 . . . . . . 7 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
24 mulidnq 6373 . . . . . . . 8 (𝐺 Q → (𝐺 ·Q 1Q) = 𝐺)
256, 24syl 14 . . . . . . 7 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → (𝐺 ·Q 1Q) = 𝐺)
2620, 23, 253eqtrd 2073 . . . . . 6 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = 𝐺)
2726breq1d 3765 . . . . 5 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → (((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) <Q (𝑋 ·Q (*Q𝐻)) ↔ 𝐺 <Q (𝑋 ·Q (*Q𝐻))))
2818, 27bitrd 177 . . . 4 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝐺 <Q (𝑋 ·Q (*Q𝐻))))
29 prcunqu 6467 . . . . . 6 ((⟨(1stA), (2ndA)⟩ P 𝐺 (2ndA)) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) (2ndA)))
303, 29sylan 267 . . . . 5 ((A P 𝐺 (2ndA)) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) (2ndA)))
3130ad2antrr 457 . . . 4 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) (2ndA)))
3228, 31sylbid 139 . . 3 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 → (𝑋 ·Q (*Q𝐻)) (2ndA)))
33 df-imp 6451 . . . . . . . . 9 ·P = (w P, v P ↦ ⟨{x Qy Q z Q (y (1stw) z (1stv) x = (y ·Q z))}, {x Qy Q z Q (y (2ndw) z (2ndv) x = (y ·Q z))}⟩)
34 mulclnq 6360 . . . . . . . . 9 ((y Q z Q) → (y ·Q z) Q)
3533, 34genppreclu 6497 . . . . . . . 8 ((A P B P) → (((𝑋 ·Q (*Q𝐻)) (2ndA) 𝐻 (2ndB)) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) (2nd ‘(A ·P B))))
3635exp4b 349 . . . . . . 7 (A P → (B P → ((𝑋 ·Q (*Q𝐻)) (2ndA) → (𝐻 (2ndB) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) (2nd ‘(A ·P B))))))
3736com34 77 . . . . . 6 (A P → (B P → (𝐻 (2ndB) → ((𝑋 ·Q (*Q𝐻)) (2ndA) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) (2nd ‘(A ·P B))))))
3837imp32 244 . . . . 5 ((A P (B P 𝐻 (2ndB))) → ((𝑋 ·Q (*Q𝐻)) (2ndA) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) (2nd ‘(A ·P B))))
3938adantlr 446 . . . 4 (((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) → ((𝑋 ·Q (*Q𝐻)) (2ndA) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) (2nd ‘(A ·P B))))
4039adantr 261 . . 3 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝑋 ·Q (*Q𝐻)) (2ndA) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) (2nd ‘(A ·P B))))
4132, 40syld 40 . 2 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) (2nd ‘(A ·P B))))
42 mulassnqg 6368 . . . . 5 ((𝑋 Q (*Q𝐻) Q 𝐻 Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
4313, 15, 10, 42syl3anc 1134 . . . 4 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
44 mulcomnqg 6367 . . . . . . 7 (((*Q𝐻) Q 𝐻 Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4515, 10, 44syl2anc 391 . . . . . 6 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4610, 21syl 14 . . . . . 6 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → (𝐻 ·Q (*Q𝐻)) = 1Q)
4745, 46eqtrd 2069 . . . . 5 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((*Q𝐻) ·Q 𝐻) = 1Q)
4847oveq2d 5471 . . . 4 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)) = (𝑋 ·Q 1Q))
49 mulidnq 6373 . . . . 5 (𝑋 Q → (𝑋 ·Q 1Q) = 𝑋)
5049adantl 262 . . . 4 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → (𝑋 ·Q 1Q) = 𝑋)
5143, 48, 503eqtrd 2073 . . 3 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = 𝑋)
5251eleq1d 2103 . 2 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → (((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) (2nd ‘(A ·P B)) ↔ 𝑋 (2nd ‘(A ·P B))))
5341, 52sylibd 138 1 ((((A P 𝐺 (2ndA)) (B P 𝐻 (2ndB))) 𝑋 Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝑋 (2nd ‘(A ·P B))))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   w3a 884   = wceq 1242   wcel 1390  cop 3370   class class class wbr 3755  cfv 4845  (class class class)co 5455  1st c1st 5707  2nd c2nd 5708  Qcnq 6264  1Qc1q 6265   ·Q cmq 6267  *Qcrq 6268   <Q cltq 6269  Pcnp 6275   ·P cmp 6278
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-coll 3863  ax-sep 3866  ax-nul 3874  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220  ax-iinf 4254
This theorem depends on definitions:  df-bi 110  df-dc 742  df-3or 885  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-int 3607  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-tr 3846  df-eprel 4017  df-id 4021  df-iord 4069  df-on 4071  df-suc 4074  df-iom 4257  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852  df-fv 4853  df-ov 5458  df-oprab 5459  df-mpt2 5460  df-1st 5709  df-2nd 5710  df-recs 5861  df-irdg 5897  df-1o 5940  df-oadd 5944  df-omul 5945  df-er 6042  df-ec 6044  df-qs 6048  df-ni 6288  df-mi 6290  df-lti 6291  df-mpq 6329  df-enq 6331  df-nqqs 6332  df-mqqs 6334  df-1nqqs 6335  df-rq 6336  df-ltnqqs 6337  df-inp 6448  df-imp 6451
This theorem is referenced by:  mullocprlem  6549  mulclpr  6551
  Copyright terms: Public domain W3C validator