ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcn2 GIF version

Theorem mulcn2 9833
Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
mulcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem mulcn2
StepHypRef Expression
1 rphalfcl 8610 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
213ad2ant1 925 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 / 2) ∈ ℝ+)
3 abscl 9649 . . . . . 6 (𝐶 ∈ ℂ → (abs‘𝐶) ∈ ℝ)
433ad2ant3 927 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘𝐶) ∈ ℝ)
5 abscl 9649 . . . . . . . . . 10 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
653ad2ant2 926 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘𝐵) ∈ ℝ)
7 1re 7026 . . . . . . . . 9 1 ∈ ℝ
8 readdcl 7007 . . . . . . . . 9 (((abs‘𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐵) + 1) ∈ ℝ)
96, 7, 8sylancl 392 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐵) + 1) ∈ ℝ)
10 absge0 9658 . . . . . . . . . 10 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
11 0lt1 7141 . . . . . . . . . . 11 0 < 1
12 addgegt0 7444 . . . . . . . . . . . 12 ((((abs‘𝐵) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (abs‘𝐵) ∧ 0 < 1)) → 0 < ((abs‘𝐵) + 1))
1312an4s 522 . . . . . . . . . . 11 ((((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ (1 ∈ ℝ ∧ 0 < 1)) → 0 < ((abs‘𝐵) + 1))
147, 11, 13mpanr12 415 . . . . . . . . . 10 (((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) → 0 < ((abs‘𝐵) + 1))
155, 10, 14syl2anc 391 . . . . . . . . 9 (𝐵 ∈ ℂ → 0 < ((abs‘𝐵) + 1))
16153ad2ant2 926 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 < ((abs‘𝐵) + 1))
179, 16elrpd 8620 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐵) + 1) ∈ ℝ+)
182, 17rpdivcld 8640 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+)
1918rpred 8622 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ)
204, 19readdcld 7055 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ)
21 absge0 9658 . . . . . 6 (𝐶 ∈ ℂ → 0 ≤ (abs‘𝐶))
22213ad2ant3 927 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 ≤ (abs‘𝐶))
23 elrp 8585 . . . . . 6 (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+ ↔ (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
24 addgegt0 7444 . . . . . . 7 ((((abs‘𝐶) ∈ ℝ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ) ∧ (0 ≤ (abs‘𝐶) ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2524an4s 522 . . . . . 6 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)) ∧ (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2623, 25sylan2b 271 . . . . 5 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)) ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
274, 22, 18, 26syl21anc 1134 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2820, 27elrpd 8620 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ+)
292, 28rpdivcld 8640 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ+)
30 simprl 483 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
31 simpl2 908 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐵 ∈ ℂ)
3230, 31subcld 7322 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝐵) ∈ ℂ)
3332abscld 9777 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑢𝐵)) ∈ ℝ)
342adantr 261 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐴 / 2) ∈ ℝ+)
3534rpred 8622 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐴 / 2) ∈ ℝ)
3628adantr 261 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ+)
3733, 35, 36ltmuldivd 8670 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) ↔ (abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
38 simprr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
39 simpl3 909 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ)
4038, 39abs2difd 9793 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)))
4138abscld 9777 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝑣) ∈ ℝ)
424adantr 261 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐶) ∈ ℝ)
4341, 42resubcld 7379 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) − (abs‘𝐶)) ∈ ℝ)
4438, 39subcld 7322 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑣𝐶) ∈ ℂ)
4544abscld 9777 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑣𝐶)) ∈ ℝ)
4619adantr 261 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ)
47 lelttr 7106 . . . . . . . . . . . . . 14 ((((abs‘𝑣) − (abs‘𝐶)) ∈ ℝ ∧ (abs‘(𝑣𝐶)) ∈ ℝ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ) → ((((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
4843, 45, 46, 47syl3anc 1135 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
4940, 48mpand 405 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
5041, 42, 46ltsubadd2d 7534 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) ↔ (abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5149, 50sylibd 138 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5220adantr 261 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ)
53 ltle 7105 . . . . . . . . . . . 12 (((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ) → ((abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5441, 52, 53syl2anc 391 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5551, 54syld 40 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5632absge0d 9780 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 0 ≤ (abs‘(𝑢𝐵)))
57 lemul2a 7825 . . . . . . . . . . . 12 ((((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑢𝐵)))) ∧ (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5857ex 108 . . . . . . . . . . 11 (((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑢𝐵)))) → ((abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
5941, 52, 33, 56, 58syl112anc 1139 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
6033, 41remulcld 7056 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ∈ ℝ)
6133, 52remulcld 7056 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ)
62 lelttr 7106 . . . . . . . . . . . 12 ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ ∧ (𝐴 / 2) ∈ ℝ) → ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6360, 61, 35, 62syl3anc 1135 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6463expd 245 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6555, 59, 643syld 51 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6665com23 72 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6737, 66sylbird 159 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6867impd 242 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6932, 38absmuld 9790 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢𝐵) · 𝑣)) = ((abs‘(𝑢𝐵)) · (abs‘𝑣)))
7030, 31, 38subdird 7412 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑢𝐵) · 𝑣) = ((𝑢 · 𝑣) − (𝐵 · 𝑣)))
7170fveq2d 5182 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢𝐵) · 𝑣)) = (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))))
7269, 71eqtr3d 2074 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) = (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))))
7372breq1d 3774 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2) ↔ (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2)))
7468, 73sylibd 138 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2)))
7517adantr 261 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) + 1) ∈ ℝ+)
7645, 35, 75ltmuldiv2d 8671 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2) ↔ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
7731, 38, 39subdid 7411 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · (𝑣𝐶)) = ((𝐵 · 𝑣) − (𝐵 · 𝐶)))
7877fveq2d 5182 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝐵 · (𝑣𝐶))) = (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))))
7931, 44absmuld 9790 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝐵 · (𝑣𝐶))) = ((abs‘𝐵) · (abs‘(𝑣𝐶))))
8078, 79eqtr3d 2074 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) = ((abs‘𝐵) · (abs‘(𝑣𝐶))))
8131abscld 9777 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐵) ∈ ℝ)
8281lep1d 7897 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐵) ≤ ((abs‘𝐵) + 1))
839adantr 261 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) + 1) ∈ ℝ)
84 abscl 9649 . . . . . . . . . . . . 13 ((𝑣𝐶) ∈ ℂ → (abs‘(𝑣𝐶)) ∈ ℝ)
85 absge0 9658 . . . . . . . . . . . . 13 ((𝑣𝐶) ∈ ℂ → 0 ≤ (abs‘(𝑣𝐶)))
8684, 85jca 290 . . . . . . . . . . . 12 ((𝑣𝐶) ∈ ℂ → ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶))))
87 lemul1a 7824 . . . . . . . . . . . . 13 ((((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶)))) ∧ (abs‘𝐵) ≤ ((abs‘𝐵) + 1)) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
8887ex 108 . . . . . . . . . . . 12 (((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶)))) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
8986, 88syl3an3 1170 . . . . . . . . . . 11 (((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ (𝑣𝐶) ∈ ℂ) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
9081, 83, 44, 89syl3anc 1135 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
9182, 90mpd 13 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
9280, 91eqbrtrd 3784 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
9331, 38mulcld 7047 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · 𝑣) ∈ ℂ)
9431, 39mulcld 7047 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
9593, 94subcld 7322 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐵 · 𝑣) − (𝐵 · 𝐶)) ∈ ℂ)
9695abscld 9777 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ∈ ℝ)
9783, 45remulcld 7056 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∈ ℝ)
98 lelttr 7106 . . . . . . . . 9 (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ∈ ℝ ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∈ ℝ ∧ (𝐴 / 2) ∈ ℝ) → (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
9996, 97, 35, 98syl3anc 1135 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10092, 99mpand 405 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10176, 100sylbird 159 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
102101adantld 263 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10374, 102jcad 291 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2))))
104 mulcl 7008 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
105104adantl 262 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
106 simpl1 907 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ+)
107106rpred 8622 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ)
108 abs3lem 9707 . . . . 5 ((((𝑢 · 𝑣) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) ∧ ((𝐵 · 𝑣) ∈ ℂ ∧ 𝐴 ∈ ℝ)) → (((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
109105, 94, 93, 107, 108syl22anc 1136 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
110103, 109syld 40 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
111110ralrimivva 2401 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
112 breq2 3768 . . . . . 6 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑢𝐵)) < 𝑦 ↔ (abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
113112anbi1d 438 . . . . 5 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧)))
114113imbi1d 220 . . . 4 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
1151142ralbidv 2348 . . 3 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
116 breq2 3768 . . . . . 6 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑣𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
117116anbi2d 437 . . . . 5 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
118117imbi1d 220 . . . 4 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
1191182ralbidv 2348 . . 3 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
120115, 119rspc2ev 2664 . 2 ((((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ+ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
12129, 18, 111, 120syl3anc 1135 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885   = wceq 1243  wcel 1393  wral 2306  wrex 2307   class class class wbr 3764  cfv 4902  (class class class)co 5512  cc 6887  cr 6888  0cc0 6889  1c1 6890   + caddc 6892   · cmul 6894   < clt 7060  cle 7061  cmin 7182   / cdiv 7651  2c2 7964  +crp 8583  abscabs 9595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003  ax-caucvg 7004
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255  df-cj 9442  df-re 9443  df-im 9444  df-rsqrt 9596  df-abs 9597
This theorem is referenced by:  climmul  9847
  Copyright terms: Public domain W3C validator