Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12dv GIF version

Theorem mpteq12dv 3839
 Description: An equality inference for the maps to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12dv.1 (𝜑𝐴 = 𝐶)
mpteq12dv.2 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12dv (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12dv
StepHypRef Expression
1 mpteq12dv.1 . 2 (𝜑𝐴 = 𝐶)
2 mpteq12dv.2 . . 3 (𝜑𝐵 = 𝐷)
32adantr 261 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
41, 3mpteq12dva 3838 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∈ wcel 1393   ↦ cmpt 3818 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-ral 2311  df-opab 3819  df-mpt 3820 This theorem is referenced by:  mpteq12i  3845  offval  5719  offval3  5761
 Copyright terms: Public domain W3C validator