![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpt2eq123dv | GIF version |
Description: An equality deduction for the maps to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpt2eq123dv.1 | ⊢ (φ → A = 𝐷) |
mpt2eq123dv.2 | ⊢ (φ → B = 𝐸) |
mpt2eq123dv.3 | ⊢ (φ → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpt2eq123dv | ⊢ (φ → (x ∈ A, y ∈ B ↦ 𝐶) = (x ∈ 𝐷, y ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2eq123dv.1 | . 2 ⊢ (φ → A = 𝐷) | |
2 | mpt2eq123dv.2 | . . 3 ⊢ (φ → B = 𝐸) | |
3 | 2 | adantr 261 | . 2 ⊢ ((φ ∧ x ∈ A) → B = 𝐸) |
4 | mpt2eq123dv.3 | . . 3 ⊢ (φ → 𝐶 = 𝐹) | |
5 | 4 | adantr 261 | . 2 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → 𝐶 = 𝐹) |
6 | 1, 3, 5 | mpt2eq123dva 5508 | 1 ⊢ (φ → (x ∈ A, y ∈ B ↦ 𝐶) = (x ∈ 𝐷, y ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1242 ∈ wcel 1390 ↦ cmpt2 5457 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-11 1394 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-oprab 5459 df-mpt2 5460 |
This theorem is referenced by: mpt2eq123i 5510 |
Copyright terms: Public domain | W3C validator |