Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpt2eq123dv | GIF version |
Description: An equality deduction for the maps to notation. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpt2eq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
mpt2eq123dv.2 | ⊢ (𝜑 → 𝐵 = 𝐸) |
mpt2eq123dv.3 | ⊢ (𝜑 → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpt2eq123dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2eq123dv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | |
2 | mpt2eq123dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
3 | 2 | adantr 261 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
4 | mpt2eq123dv.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐹) | |
5 | 4 | adantr 261 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
6 | 1, 3, 5 | mpt2eq123dva 5566 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∈ wcel 1393 ↦ cmpt2 5514 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-oprab 5516 df-mpt2 5517 |
This theorem is referenced by: mpt2eq123i 5568 |
Copyright terms: Public domain | W3C validator |