ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt22eqb GIF version

Theorem mpt22eqb 5610
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 5608. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
mpt22eqb (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mpt22eqb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pm13.183 2681 . . . . . 6 (𝐶𝑉 → (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
21ralimi 2384 . . . . 5 (∀𝑦𝐵 𝐶𝑉 → ∀𝑦𝐵 (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
3 ralbi 2445 . . . . 5 (∀𝑦𝐵 (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)) → (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
42, 3syl 14 . . . 4 (∀𝑦𝐵 𝐶𝑉 → (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
54ralimi 2384 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴 (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
6 ralbi 2445 . . 3 (∀𝑥𝐴 (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)) → (∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
75, 6syl 14 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
8 df-mpt2 5517 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
9 df-mpt2 5517 . . . 4 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)}
108, 9eqeq12i 2053 . . 3 ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)})
11 eqoprab2b 5563 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)} ↔ ∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)))
12 pm5.32 426 . . . . . . 7 (((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧 = 𝐷)) ↔ (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)))
1312albii 1359 . . . . . 6 (∀𝑧((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧 = 𝐷)) ↔ ∀𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)))
14 19.21v 1753 . . . . . 6 (∀𝑧((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧 = 𝐷)) ↔ ((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
1513, 14bitr3i 175 . . . . 5 (∀𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)) ↔ ((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
16152albii 1360 . . . 4 (∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
17 r2al 2343 . . . 4 (∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
1816, 17bitr4i 176 . . 3 (∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷))
1910, 11, 183bitri 195 . 2 ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷))
207, 19syl6rbbr 188 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241   = wceq 1243  wcel 1393  wral 2306  {coprab 5513  cmpt2 5514
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-oprab 5516  df-mpt2 5517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator