Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpani GIF version

Theorem mpani 406
 Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpani.1 𝜓
mpani.2 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mpani (𝜑 → (𝜒𝜃))

Proof of Theorem mpani
StepHypRef Expression
1 mpani.1 . . 3 𝜓
21a1i 9 . 2 (𝜑𝜓)
3 mpani.2 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpand 405 1 (𝜑 → (𝜒𝜃))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  mp2ani  408  mulgt1  7829  recgt1i  7864  recreclt  7866  nngt0  7939  nnrecgt0  7951  elnnnn0c  8227  elnnz1  8268  recnz  8333  uz3m2nn  8515  ledivge1le  8652  expubnd  9311  expnbnd  9372  expnlbnd  9373
 Copyright terms: Public domain W3C validator