![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpand | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpand.1 | ⊢ (φ → ψ) |
mpand.2 | ⊢ (φ → ((ψ ∧ χ) → θ)) |
Ref | Expression |
---|---|
mpand | ⊢ (φ → (χ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpand.1 | . 2 ⊢ (φ → ψ) | |
2 | mpand.2 | . . 3 ⊢ (φ → ((ψ ∧ χ) → θ)) | |
3 | 2 | ancomsd 256 | . 2 ⊢ (φ → ((χ ∧ ψ) → θ)) |
4 | 1, 3 | mpan2d 404 | 1 ⊢ (φ → (χ → θ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: mpani 406 mp2and 409 rspcimedv 2652 ovig 5564 prcdnql 6467 prcunqu 6468 p1le 7596 nnge1 7718 zltp1le 8074 gtndiv 8111 uzss 8269 xrre2 8504 xrre3 8505 leexp2r 8962 expnlbnd2 9027 |
Copyright terms: Public domain | W3C validator |