![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3anl2 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
mp3anl2.1 | ⊢ 𝜓 |
mp3anl2.2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
mp3anl2 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3anl2.1 | . . 3 ⊢ 𝜓 | |
2 | mp3anl2.2 | . . . 4 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
3 | 2 | ex 108 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
4 | 1, 3 | mp3an2 1220 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜃 → 𝜏)) |
5 | 4 | imp 115 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: mp3anr2 1230 |
Copyright terms: Public domain | W3C validator |