Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mormo GIF version

Theorem mormo 2521
 Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
mormo (∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem mormo
StepHypRef Expression
1 moan 1969 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝑥𝐴𝜑))
2 df-rmo 2314 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
31, 2sylibr 137 1 (∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∈ wcel 1393  ∃*wmo 1901  ∃*wrmo 2309 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-rmo 2314 This theorem is referenced by:  reueq  2738  reusv1  4190
 Copyright terms: Public domain W3C validator