Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  moriotass GIF version

Theorem moriotass 5496
 Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
moriotass ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem moriotass
StepHypRef Expression
1 ssrexv 3005 . . . . 5 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
21imp 115 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑) → ∃𝑥𝐵 𝜑)
323adant3 924 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → ∃𝑥𝐵 𝜑)
4 simp3 906 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → ∃*𝑥𝐵 𝜑)
5 reu5 2522 . . 3 (∃!𝑥𝐵 𝜑 ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑))
63, 4, 5sylanbrc 394 . 2 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → ∃!𝑥𝐵 𝜑)
7 riotass 5495 . 2 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
86, 7syld3an3 1180 1 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ w3a 885   = wceq 1243  ∃wrex 2307  ∃!wreu 2308  ∃*wrmo 2309   ⊆ wss 2917  ℩crio 5467 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-uni 3581  df-iota 4867  df-riota 5468 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator