![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > moim | GIF version |
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.) |
Ref | Expression |
---|---|
moim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1434 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝜓) | |
2 | ax-4 1400 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
3 | spsbim 1724 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
4 | 2, 3 | anim12d 318 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) |
5 | 4 | imim1d 69 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
6 | 5 | alimdv 1759 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
7 | 1, 6 | alimd 1414 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
8 | ax-17 1419 | . . 3 ⊢ (𝜓 → ∀𝑦𝜓) | |
9 | 8 | mo3h 1953 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) |
10 | ax-17 1419 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
11 | 10 | mo3h 1953 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
12 | 7, 9, 11 | 3imtr4g 194 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∀wal 1241 [wsb 1645 ∃*wmo 1901 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 |
This theorem is referenced by: moimi 1965 euimmo 1967 moexexdc 1984 euexex 1985 rmoim 2740 rmoimi2 2742 disjss1 3751 reusv1 4190 funmo 4917 |
Copyright terms: Public domain | W3C validator |