ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttrdi GIF version

Theorem lelttrdi 7421
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
Hypotheses
Ref Expression
lelttrdi.r (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
lelttrdi.l (𝜑𝐵𝐶)
Assertion
Ref Expression
lelttrdi (𝜑 → (𝐴 < 𝐵𝐴 < 𝐶))

Proof of Theorem lelttrdi
StepHypRef Expression
1 lelttrdi.r . . . . 5 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
21simp1d 916 . . . 4 (𝜑𝐴 ∈ ℝ)
32adantr 261 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ)
41simp2d 917 . . . 4 (𝜑𝐵 ∈ ℝ)
54adantr 261 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ)
61simp3d 918 . . . 4 (𝜑𝐶 ∈ ℝ)
76adantr 261 . . 3 ((𝜑𝐴 < 𝐵) → 𝐶 ∈ ℝ)
8 simpr 103 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
9 lelttrdi.l . . . 4 (𝜑𝐵𝐶)
109adantr 261 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵𝐶)
113, 5, 7, 8, 10ltletrd 7420 . 2 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐶)
1211ex 108 1 (𝜑 → (𝐴 < 𝐵𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885  wcel 1393   class class class wbr 3764  cr 6888   < clt 7060  cle 7061
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltwlin 6997
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066
This theorem is referenced by:  subfzo0  9097
  Copyright terms: Public domain W3C validator