Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ledivge1le GIF version

Theorem ledivge1le 8652
 Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ledivge1le ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))

Proof of Theorem ledivge1le
StepHypRef Expression
1 divle1le 8651 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
21adantr 261 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
3 rerpdivcl 8613 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
43adantr 261 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
5 1red 7042 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → 1 ∈ ℝ)
6 rpre 8589 . . . . . . . . . . 11 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
76adantl 262 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
8 letr 7101 . . . . . . . . . 10 (((𝐴 / 𝐵) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 / 𝐵) ≤ 1 ∧ 1 ≤ 𝐶) → (𝐴 / 𝐵) ≤ 𝐶))
94, 5, 7, 8syl3anc 1135 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (((𝐴 / 𝐵) ≤ 1 ∧ 1 ≤ 𝐶) → (𝐴 / 𝐵) ≤ 𝐶))
109expd 245 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 → (1 ≤ 𝐶 → (𝐴 / 𝐵) ≤ 𝐶)))
112, 10sylbird 159 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 → (1 ≤ 𝐶 → (𝐴 / 𝐵) ≤ 𝐶)))
1211com23 72 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (1 ≤ 𝐶 → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶)))
1312expimpd 345 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶)))
1413ex 108 . . . 4 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ+ → ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶))))
15143imp1 1117 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ≤ 𝐶)
16 simp1 904 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → 𝐴 ∈ ℝ)
176adantr 261 . . . . . . . 8 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → 𝐶 ∈ ℝ)
18 0lt1 7141 . . . . . . . . . 10 0 < 1
19 0red 7028 . . . . . . . . . . 11 (𝐶 ∈ ℝ+ → 0 ∈ ℝ)
20 1red 7042 . . . . . . . . . . 11 (𝐶 ∈ ℝ+ → 1 ∈ ℝ)
21 ltletr 7107 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐶) → 0 < 𝐶))
2219, 20, 6, 21syl3anc 1135 . . . . . . . . . 10 (𝐶 ∈ ℝ+ → ((0 < 1 ∧ 1 ≤ 𝐶) → 0 < 𝐶))
2318, 22mpani 406 . . . . . . . . 9 (𝐶 ∈ ℝ+ → (1 ≤ 𝐶 → 0 < 𝐶))
2423imp 115 . . . . . . . 8 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → 0 < 𝐶)
2517, 24jca 290 . . . . . . 7 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
26253ad2ant3 927 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
27 rpregt0 8596 . . . . . . 7 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
28273ad2ant2 926 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2916, 26, 283jca 1084 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)))
3029adantr 261 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)))
31 lediv23 7859 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐶))
3230, 31syl 14 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐶))
3315, 32mpbird 156 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 / 𝐶) ≤ 𝐵)
3433ex 108 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   ∧ w3a 885   ∈ wcel 1393   class class class wbr 3764  (class class class)co 5512  ℝcr 6888  0cc0 6889  1c1 6890   < clt 7060   ≤ cle 7061   / cdiv 7651  ℝ+crp 8583 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-rp 8584 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator