ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbzbi GIF version

Theorem lbzbi 8551
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
lbzbi (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem lbzbi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1421 . . 3 𝑥 𝐴 ⊆ ℝ
2 nfre1 2365 . . 3 𝑥𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦
3 btwnz 8357 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 ∧ ∃𝑧 ∈ ℤ 𝑥 < 𝑧))
43simpld 105 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑧 ∈ ℤ 𝑧 < 𝑥)
5 ssel2 2940 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
6 zre 8249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
7 ltleletr 7100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 < 𝑥𝑥𝑦) → 𝑧𝑦))
86, 7syl3an1 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 < 𝑥𝑥𝑦) → 𝑧𝑦))
98expd 245 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦)))
1093expia 1106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑦 ∈ ℝ → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
115, 10syl5 28 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
1211expdimp 246 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑦𝐴 → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
1312com23 72 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (𝑦𝐴 → (𝑥𝑦𝑧𝑦))))
1413imp 115 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (𝑦𝐴 → (𝑥𝑦𝑧𝑦)))
1514ralrimiv 2391 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ∀𝑦𝐴 (𝑥𝑦𝑧𝑦))
16 ralim 2380 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝐴 (𝑥𝑦𝑧𝑦) → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))
1715, 16syl 14 . . . . . . . . . . . . . . . . . . . 20 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))
1817ex 108 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
1918anasss 379 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ (𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
2019expcom 109 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 ∈ ℤ → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))))
2120com23 72 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (𝑧 ∈ ℤ → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))))
2221imp 115 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (𝑧 ∈ ℤ → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
2322imdistand 421 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑧𝑦)))
24 breq1 3767 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
2524ralbidv 2326 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 𝑧𝑦))
2625rspcev 2656 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑧𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)
2723, 26syl6 29 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
2827ex 108 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
2928com23 72 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3029ancomsd 256 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((∀𝑦𝐴 𝑥𝑦𝑧 ∈ ℤ) → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3130expdimp 246 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℤ → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3231rexlimdv 2432 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑦𝐴 𝑥𝑦) → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3332anasss 379 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦)) → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3433expcom 109 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ∈ ℝ → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
354, 34mpdi 38 . . . . 5 ((𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ∈ ℝ → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3635ex 108 . . . 4 (𝐴 ⊆ ℝ → (∀𝑦𝐴 𝑥𝑦 → (𝑥 ∈ ℝ → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3736com23 72 . . 3 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
381, 2, 37rexlimd 2430 . 2 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
39 zssre 8252 . . 3 ℤ ⊆ ℝ
40 ssrexv 3005 . . 3 (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦))
4139, 40ax-mp 7 . 2 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
4238, 41impbid1 130 1 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885  wcel 1393  wral 2306  wrex 2307  wss 2917   class class class wbr 3764  cr 6888   < clt 7060  cle 7061  cz 8245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000  ax-arch 7003
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-z 8246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator