ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo2 GIF version

Theorem issmo2 5904
Description: Alternative definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
issmo2 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem issmo2
StepHypRef Expression
1 fss 5054 . . . . 5 ((𝐹:𝐴𝐵𝐵 ⊆ On) → 𝐹:𝐴⟶On)
21ex 108 . . . 4 (𝐹:𝐴𝐵 → (𝐵 ⊆ On → 𝐹:𝐴⟶On))
3 fdm 5050 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
43feq2d 5035 . . . 4 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹⟶On ↔ 𝐹:𝐴⟶On))
52, 4sylibrd 158 . . 3 (𝐹:𝐴𝐵 → (𝐵 ⊆ On → 𝐹:dom 𝐹⟶On))
6 ordeq 4109 . . . . 5 (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
73, 6syl 14 . . . 4 (𝐹:𝐴𝐵 → (Ord dom 𝐹 ↔ Ord 𝐴))
87biimprd 147 . . 3 (𝐹:𝐴𝐵 → (Ord 𝐴 → Ord dom 𝐹))
93raleqdv 2511 . . . 4 (𝐹:𝐴𝐵 → (∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) ↔ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
109biimprd 147 . . 3 (𝐹:𝐴𝐵 → (∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) → ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
115, 8, 103anim123d 1214 . 2 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
12 dfsmo2 5902 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1311, 12syl6ibr 151 1 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  w3a 885   = wceq 1243  wcel 1393  wral 2306  wss 2917  Ord word 4099  Oncon0 4100  dom cdm 4345  wf 4898  cfv 4902  Smo wsmo 5900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-in 2924  df-ss 2931  df-uni 3581  df-tr 3855  df-iord 4103  df-fn 4905  df-f 4906  df-smo 5901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator