ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprmpt2 Structured version   GIF version

Theorem isprmpt2 5799
Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
Hypotheses
Ref Expression
isprmpt2.1 (φ𝑀 = {⟨f, 𝑝⟩ ∣ (f𝑊𝑝 ψ)})
isprmpt2.2 ((f = 𝐹 𝑝 = 𝑃) → (ψχ))
Assertion
Ref Expression
isprmpt2 (φ → ((𝐹 𝑋 𝑃 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 χ))))
Distinct variable groups:   f,𝐹,𝑝   𝑃,f,𝑝   f,𝑊,𝑝   χ,f,𝑝
Allowed substitution hints:   φ(f,𝑝)   ψ(f,𝑝)   𝑀(f,𝑝)   𝑋(f,𝑝)   𝑌(f,𝑝)

Proof of Theorem isprmpt2
StepHypRef Expression
1 df-br 3756 . . . 4 (𝐹𝑀𝑃 ↔ ⟨𝐹, 𝑃 𝑀)
2 isprmpt2.1 . . . . . 6 (φ𝑀 = {⟨f, 𝑝⟩ ∣ (f𝑊𝑝 ψ)})
32adantr 261 . . . . 5 ((φ (𝐹 𝑋 𝑃 𝑌)) → 𝑀 = {⟨f, 𝑝⟩ ∣ (f𝑊𝑝 ψ)})
43eleq2d 2104 . . . 4 ((φ (𝐹 𝑋 𝑃 𝑌)) → (⟨𝐹, 𝑃 𝑀 ↔ ⟨𝐹, 𝑃 {⟨f, 𝑝⟩ ∣ (f𝑊𝑝 ψ)}))
51, 4syl5bb 181 . . 3 ((φ (𝐹 𝑋 𝑃 𝑌)) → (𝐹𝑀𝑃 ↔ ⟨𝐹, 𝑃 {⟨f, 𝑝⟩ ∣ (f𝑊𝑝 ψ)}))
6 breq12 3760 . . . . . 6 ((f = 𝐹 𝑝 = 𝑃) → (f𝑊𝑝𝐹𝑊𝑃))
7 isprmpt2.2 . . . . . 6 ((f = 𝐹 𝑝 = 𝑃) → (ψχ))
86, 7anbi12d 442 . . . . 5 ((f = 𝐹 𝑝 = 𝑃) → ((f𝑊𝑝 ψ) ↔ (𝐹𝑊𝑃 χ)))
98opelopabga 3991 . . . 4 ((𝐹 𝑋 𝑃 𝑌) → (⟨𝐹, 𝑃 {⟨f, 𝑝⟩ ∣ (f𝑊𝑝 ψ)} ↔ (𝐹𝑊𝑃 χ)))
109adantl 262 . . 3 ((φ (𝐹 𝑋 𝑃 𝑌)) → (⟨𝐹, 𝑃 {⟨f, 𝑝⟩ ∣ (f𝑊𝑝 ψ)} ↔ (𝐹𝑊𝑃 χ)))
115, 10bitrd 177 . 2 ((φ (𝐹 𝑋 𝑃 𝑌)) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 χ)))
1211ex 108 1 (φ → ((𝐹 𝑋 𝑃 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 χ))))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242   wcel 1390  cop 3370   class class class wbr 3755  {copab 3808
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator