ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqid3s GIF version

Theorem iseqid3s 9220
Description: A sequence that consists of zeroes up to 𝑁 sums to zero at 𝑁. In this case by "zero" we mean whatever the identity 𝑍 is for the operation +). (Contributed by Jim Kingdon, 18-Aug-2021.)
Hypotheses
Ref Expression
iseqid3s.1 (𝜑 → (𝑍 + 𝑍) = 𝑍)
iseqid3s.2 (𝜑𝑁 ∈ (ℤ𝑀))
iseqid3s.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)
iseqid3s.z (𝜑𝑍𝑆)
iseqid3s.s (𝜑𝑆𝑉)
iseqid3s.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqid3s.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqid3s (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝑥,𝑍,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iseqid3s
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqid3s.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 8894 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
3 fveq2 5178 . . . . . 6 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀))
43eqeq1d 2048 . . . . 5 (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = 𝑍))
54imbi2d 219 . . . 4 (𝑤 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = 𝑍)))
6 fveq2 5178 . . . . . 6 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑘))
76eqeq1d 2048 . . . . 5 (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍))
87imbi2d 219 . . . 4 (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍)))
9 fveq2 5178 . . . . . 6 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)))
109eqeq1d 2048 . . . . 5 (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍))
1110imbi2d 219 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍)))
12 fveq2 5178 . . . . . 6 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
1312eqeq1d 2048 . . . . 5 (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍))
1413imbi2d 219 . . . 4 (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍)))
15 eluzel2 8476 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
161, 15syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
17 iseqid3s.s . . . . . . 7 (𝜑𝑆𝑉)
18 iseqid3s.f . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
19 iseqid3s.cl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2016, 17, 18, 19iseq1 9196 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
21 iseqid3s.3 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)
2221ralrimiva 2392 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) = 𝑍)
23 eluzfz1 8893 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
24 fveq2 5178 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
2524eqeq1d 2048 . . . . . . . . 9 (𝑥 = 𝑀 → ((𝐹𝑥) = 𝑍 ↔ (𝐹𝑀) = 𝑍))
2625rspcv 2652 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) = 𝑍 → (𝐹𝑀) = 𝑍))
271, 23, 263syl 17 . . . . . . 7 (𝜑 → (∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) = 𝑍 → (𝐹𝑀) = 𝑍))
2822, 27mpd 13 . . . . . 6 (𝜑 → (𝐹𝑀) = 𝑍)
2920, 28eqtrd 2072 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = 𝑍)
3029a1i 9 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = 𝑍))
31 elfzouz 9006 . . . . . . . . . . 11 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
3231adantl 262 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (ℤ𝑀))
3317adantr 261 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑆𝑉)
3418adantlr 446 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
3519adantlr 446 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3632, 33, 34, 35iseqp1 9199 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))))
3736adantr 261 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))))
38 simpr 103 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍)
39 fzofzp1 9081 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
4039adantl 262 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
4122adantr 261 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) = 𝑍)
42 fveq2 5178 . . . . . . . . . . . . 13 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
4342eqeq1d 2048 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) = 𝑍 ↔ (𝐹‘(𝑘 + 1)) = 𝑍))
4443rspcv 2652 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (𝑀...𝑁) → (∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) = 𝑍 → (𝐹‘(𝑘 + 1)) = 𝑍))
4540, 41, 44sylc 56 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑘 + 1)) = 𝑍)
4645adantr 261 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (𝐹‘(𝑘 + 1)) = 𝑍)
4738, 46oveq12d 5530 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) + (𝐹‘(𝑘 + 1))) = (𝑍 + 𝑍))
48 iseqid3s.1 . . . . . . . . 9 (𝜑 → (𝑍 + 𝑍) = 𝑍)
4948ad2antrr 457 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (𝑍 + 𝑍) = 𝑍)
5037, 47, 493eqtrd 2076 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍)
5150ex 108 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍))
5251expcom 109 . . . . 5 (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍)))
5352a2d 23 . . . 4 (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑘) = 𝑍) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑘 + 1)) = 𝑍)))
545, 8, 11, 14, 30, 53fzind2 9093 . . 3 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍))
551, 2, 543syl 17 . 2 (𝜑 → (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍))
5655pm2.43i 43 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  wral 2306  cfv 4902  (class class class)co 5512  1c1 6888   + caddc 6890  cz 8243  cuz 8471  ...cfz 8872  ..^cfzo 8997  seqcseq 9185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6973  ax-resscn 6974  ax-1cn 6975  ax-1re 6976  ax-icn 6977  ax-addcl 6978  ax-addrcl 6979  ax-mulcl 6980  ax-addcom 6982  ax-addass 6984  ax-distr 6986  ax-i2m1 6987  ax-0id 6990  ax-rnegex 6991  ax-cnre 6993  ax-pre-ltirr 6994  ax-pre-ltwlin 6995  ax-pre-lttrn 6996  ax-pre-ltadd 6998
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-iltp 6566  df-enr 6809  df-nr 6810  df-ltr 6813  df-0r 6814  df-1r 6815  df-0 6894  df-1 6895  df-r 6897  df-lt 6900  df-pnf 7060  df-mnf 7061  df-xr 7062  df-ltxr 7063  df-le 7064  df-sub 7182  df-neg 7183  df-inn 7913  df-n0 8180  df-z 8244  df-uz 8472  df-fz 8873  df-fzo 8998  df-iseq 9186
This theorem is referenced by:  iseqid  9221  iser0  9224
  Copyright terms: Public domain W3C validator