![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iota2d | GIF version |
Description: A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
Ref | Expression |
---|---|
iota2df.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
iota2df.2 | ⊢ (𝜑 → ∃!𝑥𝜓) |
iota2df.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
iota2d | ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota2df.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
2 | iota2df.2 | . 2 ⊢ (𝜑 → ∃!𝑥𝜓) | |
3 | iota2df.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
4 | nfv 1421 | . 2 ⊢ Ⅎ𝑥𝜑 | |
5 | nfvd 1422 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
6 | nfcvd 2179 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | iota2df 4891 | 1 ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 ∈ wcel 1393 ∃!weu 1900 ℩cio 4865 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-sbc 2765 df-un 2922 df-sn 3381 df-pr 3382 df-uni 3581 df-iota 4867 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |