ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intun GIF version

Theorem intun 3643
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
intun (𝐴𝐵) = ( 𝐴 𝐵)

Proof of Theorem intun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1370 . . . 4 (∀𝑦((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦𝐴𝑥𝑦) ∧ ∀𝑦(𝑦𝐵𝑥𝑦)))
2 elun 3081 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
32imbi1i 227 . . . . . 6 ((𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑦𝐵) → 𝑥𝑦))
4 jaob 631 . . . . . 6 (((𝑦𝐴𝑦𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
53, 4bitri 173 . . . . 5 ((𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
65albii 1359 . . . 4 (∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ∀𝑦((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
7 vex 2557 . . . . . 6 𝑥 ∈ V
87elint 3618 . . . . 5 (𝑥 𝐴 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
97elint 3618 . . . . 5 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
108, 9anbi12i 433 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∀𝑦(𝑦𝐴𝑥𝑦) ∧ ∀𝑦(𝑦𝐵𝑥𝑦)))
111, 6, 103bitr4i 201 . . 3 (∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ (𝑥 𝐴𝑥 𝐵))
127elint 3618 . . 3 (𝑥 (𝐴𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦))
13 elin 3123 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
1411, 12, 133bitr4i 201 . 2 (𝑥 (𝐴𝐵) ↔ 𝑥 ∈ ( 𝐴 𝐵))
1514eqriv 2037 1 (𝐴𝐵) = ( 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wo 629  wal 1241   = wceq 1243  wcel 1393  cun 2912  cin 2913   cint 3612
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2556  df-un 2919  df-in 2921  df-int 3613
This theorem is referenced by:  intunsn  3650  riinint  4580
  Copyright terms: Public domain W3C validator