Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intss | GIF version |
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1 70 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦))) | |
2 | 1 | al2imi 1347 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦))) |
3 | vex 2560 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | 3 | elint 3621 | . . . 4 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
5 | 3 | elint 3621 | . . . 4 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) |
6 | 2, 4, 5 | 3imtr4g 194 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ ∩ 𝐴)) |
7 | 6 | alrimiv 1754 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ∀𝑥(𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ ∩ 𝐴)) |
8 | dfss2 2934 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
9 | dfss2 2934 | . 2 ⊢ (∩ 𝐵 ⊆ ∩ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ ∩ 𝐴)) | |
10 | 7, 8, 9 | 3imtr4i 190 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 ∈ wcel 1393 ⊆ wss 2917 ∩ cint 3615 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 df-ss 2931 df-int 3616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |