![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intss | GIF version |
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
intss | ⊢ (A ⊆ B → ∩ B ⊆ ∩ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1 70 | . . . . 5 ⊢ ((y ∈ A → y ∈ B) → ((y ∈ B → x ∈ y) → (y ∈ A → x ∈ y))) | |
2 | 1 | al2imi 1344 | . . . 4 ⊢ (∀y(y ∈ A → y ∈ B) → (∀y(y ∈ B → x ∈ y) → ∀y(y ∈ A → x ∈ y))) |
3 | vex 2554 | . . . . 5 ⊢ x ∈ V | |
4 | 3 | elint 3612 | . . . 4 ⊢ (x ∈ ∩ B ↔ ∀y(y ∈ B → x ∈ y)) |
5 | 3 | elint 3612 | . . . 4 ⊢ (x ∈ ∩ A ↔ ∀y(y ∈ A → x ∈ y)) |
6 | 2, 4, 5 | 3imtr4g 194 | . . 3 ⊢ (∀y(y ∈ A → y ∈ B) → (x ∈ ∩ B → x ∈ ∩ A)) |
7 | 6 | alrimiv 1751 | . 2 ⊢ (∀y(y ∈ A → y ∈ B) → ∀x(x ∈ ∩ B → x ∈ ∩ A)) |
8 | dfss2 2928 | . 2 ⊢ (A ⊆ B ↔ ∀y(y ∈ A → y ∈ B)) | |
9 | dfss2 2928 | . 2 ⊢ (∩ B ⊆ ∩ A ↔ ∀x(x ∈ ∩ B → x ∈ ∩ A)) | |
10 | 7, 8, 9 | 3imtr4i 190 | 1 ⊢ (A ⊆ B → ∩ B ⊆ ∩ A) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1240 ∈ wcel 1390 ⊆ wss 2911 ∩ cint 3606 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-v 2553 df-in 2918 df-ss 2925 df-int 3607 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |