ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanr Structured version   GIF version

Theorem intnanr 827
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
Hypothesis
Ref Expression
intnan.1 ¬ φ
Assertion
Ref Expression
intnanr ¬ (φ ψ)

Proof of Theorem intnanr
StepHypRef Expression
1 intnan.1 . 2 ¬ φ
2 simpl 102 . 2 ((φ ψ) → φ)
31, 2mto 575 1 ¬ (φ ψ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-in1 532  ax-in2 533
This theorem is referenced by:  rab0  3223  co02  4761  frec0g  5902
  Copyright terms: Public domain W3C validator