ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnan GIF version

Theorem intnan 837
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.)
Hypothesis
Ref Expression
intnan.1 ¬ φ
Assertion
Ref Expression
intnan ¬ (ψ φ)

Proof of Theorem intnan
StepHypRef Expression
1 intnan.1 . 2 ¬ φ
2 simpr 103 . 2 ((ψ φ) → φ)
31, 2mto 587 1 ¬ (ψ φ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 100  ax-in1 544  ax-in2 545
This theorem is referenced by:  bianfi  853  axnul  3873  xrltnr  8471  nltmnf  8479
  Copyright terms: Public domain W3C validator