ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intid GIF version

Theorem intid 3960
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
Hypothesis
Ref Expression
intid.1 𝐴 ∈ V
Assertion
Ref Expression
intid {𝑥𝐴𝑥} = {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem intid
StepHypRef Expression
1 intid.1 . . . 4 𝐴 ∈ V
2 snexgOLD 3935 . . . 4 (𝐴 ∈ V → {𝐴} ∈ V)
31, 2ax-mp 7 . . 3 {𝐴} ∈ V
4 eleq2 2101 . . . 4 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
51snid 3402 . . . 4 𝐴 ∈ {𝐴}
64, 5intmin3 3642 . . 3 ({𝐴} ∈ V → {𝑥𝐴𝑥} ⊆ {𝐴})
73, 6ax-mp 7 . 2 {𝑥𝐴𝑥} ⊆ {𝐴}
81elintab 3626 . . . 4 (𝐴 {𝑥𝐴𝑥} ↔ ∀𝑥(𝐴𝑥𝐴𝑥))
9 id 19 . . . 4 (𝐴𝑥𝐴𝑥)
108, 9mpgbir 1342 . . 3 𝐴 {𝑥𝐴𝑥}
11 snssi 3508 . . 3 (𝐴 {𝑥𝐴𝑥} → {𝐴} ⊆ {𝑥𝐴𝑥})
1210, 11ax-mp 7 . 2 {𝐴} ⊆ {𝑥𝐴𝑥}
137, 12eqssi 2961 1 {𝑥𝐴𝑥} = {𝐴}
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wcel 1393  {cab 2026  Vcvv 2557  wss 2917  {csn 3375   cint 3615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-int 3616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator