ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  injust Structured version   GIF version

Theorem injust 2917
Description: Soundness justification theorem for df-in 2918. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
injust {x ∣ (x A x B)} = {y ∣ (y A y B)}
Distinct variable groups:   x,A   x,B   y,A   y,B

Proof of Theorem injust
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 eleq1 2097 . . . 4 (x = z → (x Az A))
2 eleq1 2097 . . . 4 (x = z → (x Bz B))
31, 2anbi12d 442 . . 3 (x = z → ((x A x B) ↔ (z A z B)))
43cbvabv 2158 . 2 {x ∣ (x A x B)} = {z ∣ (z A z B)}
5 eleq1 2097 . . . 4 (z = y → (z Ay A))
6 eleq1 2097 . . . 4 (z = y → (z By B))
75, 6anbi12d 442 . . 3 (z = y → ((z A z B) ↔ (y A y B)))
87cbvabv 2158 . 2 {z ∣ (z A z B)} = {y ∣ (y A y B)}
94, 8eqtri 2057 1 {x ∣ (x A x B)} = {y ∣ (y A y B)}
Colors of variables: wff set class
Syntax hints:   wa 97   = wceq 1242   wcel 1390  {cab 2023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator