ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impancom Structured version   GIF version

Theorem impancom 247
Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.)
Hypothesis
Ref Expression
impancom.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
impancom ((φ χ) → (ψθ))

Proof of Theorem impancom
StepHypRef Expression
1 impancom.1 . . . 4 ((φ ψ) → (χθ))
21ex 108 . . 3 (φ → (ψ → (χθ)))
32com23 72 . 2 (φ → (χ → (ψθ)))
43imp 115 1 ((φ χ) → (ψθ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem is referenced by:  eqrdav  2021  euotd  3965  onsucelsucr  4183  isotr  5381  ltbtwnnqq  6272  genpcdl  6374  genpcuu  6375
  Copyright terms: Public domain W3C validator