ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp511 Structured version   GIF version

Theorem imp511 344
Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
imp5.1 (φ → (ψ → (χ → (θ → (τη)))))
Assertion
Ref Expression
imp511 ((φ ((ψ (χ θ)) τ)) → η)

Proof of Theorem imp511
StepHypRef Expression
1 imp5.1 . . 3 (φ → (ψ → (χ → (θ → (τη)))))
21imp4a 331 . 2 (φ → (ψ → ((χ θ) → (τη))))
32imp44 338 1 ((φ ((ψ (χ θ)) τ)) → η)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator