ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imorri Structured version   GIF version

Theorem imorri 667
Description: Infer implication from disjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypothesis
Ref Expression
imorri.1 φ ψ)
Assertion
Ref Expression
imorri (φψ)

Proof of Theorem imorri
StepHypRef Expression
1 imorri.1 . 2 φ ψ)
2 pm2.21 547 . . 3 φ → (φψ))
3 ax-1 5 . . 3 (ψ → (φψ))
42, 3jaoi 635 . 2 ((¬ φ ψ) → (φψ))
51, 4ax-mp 7 1 (φψ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   wo 628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator