ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinss1 GIF version

Theorem iinss1 3669
Description: Subclass theorem for indexed union. (Contributed by NM, 24-Jan-2012.)
Assertion
Ref Expression
iinss1 (𝐴𝐵 𝑥𝐵 𝐶 𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iinss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssralv 3004 . . 3 (𝐴𝐵 → (∀𝑥𝐵 𝑦𝐶 → ∀𝑥𝐴 𝑦𝐶))
2 vex 2560 . . . 4 𝑦 ∈ V
3 eliin 3662 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝑦𝐶))
42, 3ax-mp 7 . . 3 (𝑦 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝑦𝐶)
5 eliin 3662 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶))
62, 5ax-mp 7 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶)
71, 4, 63imtr4g 194 . 2 (𝐴𝐵 → (𝑦 𝑥𝐵 𝐶𝑦 𝑥𝐴 𝐶))
87ssrdv 2951 1 (𝐴𝐵 𝑥𝐵 𝐶 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wcel 1393  wral 2306  Vcvv 2557  wss 2917   ciin 3658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-iin 3660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator