Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iinss1 | GIF version |
Description: Subclass theorem for indexed union. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
iinss1 | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝐵 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 3004 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
2 | vex 2560 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | eliin 3662 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
4 | 2, 3 | ax-mp 7 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) |
5 | eliin 3662 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
6 | 2, 5 | ax-mp 7 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
7 | 1, 4, 6 | 3imtr4g 194 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
8 | 7 | ssrdv 2951 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝐵 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∈ wcel 1393 ∀wral 2306 Vcvv 2557 ⊆ wss 2917 ∩ ciin 3658 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-in 2924 df-ss 2931 df-iin 3660 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |