Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iinin1m | GIF version |
Description: Indexed intersection of intersection. Compare to Theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Jim Kingdon, 17-Aug-2018.) |
Ref | Expression |
---|---|
iinin1m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinin2m 3725 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
2 | incom 3129 | . . . 4 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶)) |
4 | 3 | iineq2i 3676 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) |
5 | incom 3129 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶) | |
6 | 1, 4, 5 | 3eqtr4g 2097 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∃wex 1381 ∈ wcel 1393 ∩ cin 2916 ∩ ciin 3658 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-in 2924 df-iin 3660 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |