ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftrued GIF version

Theorem iftrued 3338
Description: Value of the conditional operator when its first argument is true. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
iftrued.1 (𝜑𝜒)
Assertion
Ref Expression
iftrued (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐴)

Proof of Theorem iftrued
StepHypRef Expression
1 iftrued.1 . 2 (𝜑𝜒)
2 iftrue 3336 . 2 (𝜒 → if(𝜒, 𝐴, 𝐵) = 𝐴)
31, 2syl 14 1 (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  ifcif 3331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-if 3332
This theorem is referenced by:  expinnval  9258
  Copyright terms: Public domain W3C validator