Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iftrued | GIF version |
Description: Value of the conditional operator when its first argument is true. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iftrued.1 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
iftrued | ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrued.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | iftrue 3336 | . 2 ⊢ (𝜒 → if(𝜒, 𝐴, 𝐵) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ifcif 3331 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-if 3332 |
This theorem is referenced by: expinnval 9258 |
Copyright terms: Public domain | W3C validator |