Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ididg GIF version

Theorem ididg 4489
 Description: A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ididg (𝐴𝑉𝐴 I 𝐴)

Proof of Theorem ididg
StepHypRef Expression
1 eqid 2040 . 2 𝐴 = 𝐴
2 ideqg 4487 . 2 (𝐴𝑉 → (𝐴 I 𝐴𝐴 = 𝐴))
31, 2mpbiri 157 1 (𝐴𝑉𝐴 I 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∈ wcel 1393   class class class wbr 3764   I cid 4025 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352 This theorem is referenced by:  issetid  4490  opelresi  4623  fvi  5230
 Copyright terms: Public domain W3C validator