 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  i19.24 GIF version

Theorem i19.24 1530
 Description: Theorem 19.24 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1515, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
Hypothesis
Ref Expression
i19.24.1 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
Assertion
Ref Expression
i19.24 ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))

Proof of Theorem i19.24
StepHypRef Expression
1 19.2 1529 . . 3 (∀𝑥𝜓 → ∃𝑥𝜓)
21imim2i 12 . 2 ((∀𝑥𝜑 → ∀𝑥𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
3 i19.24.1 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
42, 3syl 14 1 ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1241  ∃wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400 This theorem depends on definitions:  df-bi 110 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator