Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > i19.24 | GIF version |
Description: Theorem 19.24 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1515, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.) |
Ref | Expression |
---|---|
i19.24.1 | ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) |
Ref | Expression |
---|---|
i19.24 | ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.2 1529 | . . 3 ⊢ (∀𝑥𝜓 → ∃𝑥𝜓) | |
2 | 1 | imim2i 12 | . 2 ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
3 | i19.24.1 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) | |
4 | 2, 3 | syl 14 | 1 ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |