![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbnd | GIF version |
Description: Deduction form of bound-variable hypothesis builder hbn 1544. (Contributed by NM, 3-Jan-2002.) |
Ref | Expression |
---|---|
hbnd.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hbnd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
hbnd | ⊢ (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbnd.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | hbnd.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | alrimih 1358 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
4 | hbnt 1543 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜓)) | |
5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-gen 1338 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |