ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbia1 Structured version   GIF version

Theorem hbia1 1417
Description: Lemma 23 of [Monk2] p. 114. (Contributed by NM, 29-May-2008.)
Assertion
Ref Expression
hbia1 ((xφxψ) → x(xφxψ))

Proof of Theorem hbia1
StepHypRef Expression
1 hba1 1406 . 2 (xφxxφ)
2 hba1 1406 . 2 (xψxxψ)
31, 2hbim 1410 1 ((xφxψ) → x(xφxψ))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1309  ax-gen 1311  ax-4 1373  ax-ial 1400  ax-i5r 1401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator