ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hba2 GIF version

Theorem hba2 1443
Description: Lemma 24 of [Monk2] p. 114. (Contributed by NM, 29-May-2008.)
Assertion
Ref Expression
hba2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝑥𝜑)

Proof of Theorem hba2
StepHypRef Expression
1 hba1 1433 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
21hbal 1366 1 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ial 1427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator