Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  hb3or GIF version

Theorem hb3or 1441
 Description: If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑 ∨ 𝜓 ∨ 𝜒). (Contributed by NM, 14-Sep-2003.)
Hypotheses
Ref Expression
hb.1 (𝜑 → ∀𝑥𝜑)
hb.2 (𝜓 → ∀𝑥𝜓)
hb.3 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
hb3or ((𝜑𝜓𝜒) → ∀𝑥(𝜑𝜓𝜒))

Proof of Theorem hb3or
StepHypRef Expression
1 df-3or 886 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
2 hb.1 . . . 4 (𝜑 → ∀𝑥𝜑)
3 hb.2 . . . 4 (𝜓 → ∀𝑥𝜓)
42, 3hbor 1438 . . 3 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
5 hb.3 . . 3 (𝜒 → ∀𝑥𝜒)
64, 5hbor 1438 . 2 (((𝜑𝜓) ∨ 𝜒) → ∀𝑥((𝜑𝜓) ∨ 𝜒))
71, 6hbxfrbi 1361 1 ((𝜑𝜓𝜒) → ∀𝑥(𝜑𝜓𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ wo 629   ∨ w3o 884  ∀wal 1241 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-gen 1338 This theorem depends on definitions:  df-bi 110  df-3or 886 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator