ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gencbvex2 GIF version

Theorem gencbvex2 2601
Description: Restatement of gencbvex 2600 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.)
Hypotheses
Ref Expression
gencbvex2.1 𝐴 ∈ V
gencbvex2.2 (𝐴 = 𝑦 → (𝜑𝜓))
gencbvex2.3 (𝐴 = 𝑦 → (𝜒𝜃))
gencbvex2.4 (𝜃 → ∃𝑥(𝜒𝐴 = 𝑦))
Assertion
Ref Expression
gencbvex2 (∃𝑥(𝜒𝜑) ↔ ∃𝑦(𝜃𝜓))
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝜃,𝑥   𝜒,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥)   𝜃(𝑦)   𝐴(𝑥)

Proof of Theorem gencbvex2
StepHypRef Expression
1 gencbvex2.1 . 2 𝐴 ∈ V
2 gencbvex2.2 . 2 (𝐴 = 𝑦 → (𝜑𝜓))
3 gencbvex2.3 . 2 (𝐴 = 𝑦 → (𝜒𝜃))
4 gencbvex2.4 . . 3 (𝜃 → ∃𝑥(𝜒𝐴 = 𝑦))
53biimpac 282 . . . 4 ((𝜒𝐴 = 𝑦) → 𝜃)
65exlimiv 1489 . . 3 (∃𝑥(𝜒𝐴 = 𝑦) → 𝜃)
74, 6impbii 117 . 2 (𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝑦))
81, 2, 3, 7gencbvex 2600 1 (∃𝑥(𝜒𝜑) ↔ ∃𝑦(𝜃𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator