![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvss | GIF version |
Description: The value of a function is a subset of 𝐵 if every element that could be a candidate for the value is a subset of 𝐵. (Contributed by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
fvss | ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 4910 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
2 | iotass 4884 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (℩𝑥𝐴𝐹𝑥) ⊆ 𝐵) | |
3 | 1, 2 | syl5eqss 2989 | 1 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 ⊆ wss 2917 class class class wbr 3764 ℩cio 4865 ‘cfv 4902 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-uni 3581 df-iota 4867 df-fv 4910 |
This theorem is referenced by: fvssunirng 5190 relfvssunirn 5191 sefvex 5196 fvmptss2 5247 tfrexlem 5948 |
Copyright terms: Public domain | W3C validator |