ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvopab6 GIF version

Theorem fvopab6 5264
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvopab6.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}
fvopab6.2 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab6.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
fvopab6 ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜓,𝑥,𝑦   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab6
StepHypRef Expression
1 elex 2566 . . 3 (𝐴𝐷𝐴 ∈ V)
2 fvopab6.2 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
3 fvopab6.3 . . . . . 6 (𝑥 = 𝐴𝐵 = 𝐶)
43eqeq2d 2051 . . . . 5 (𝑥 = 𝐴 → (𝑦 = 𝐵𝑦 = 𝐶))
52, 4anbi12d 442 . . . 4 (𝑥 = 𝐴 → ((𝜑𝑦 = 𝐵) ↔ (𝜓𝑦 = 𝐶)))
6 iba 284 . . . . 5 (𝑦 = 𝐶 → (𝜓 ↔ (𝜓𝑦 = 𝐶)))
76bicomd 129 . . . 4 (𝑦 = 𝐶 → ((𝜓𝑦 = 𝐶) ↔ 𝜓))
8 moeq 2716 . . . . . 6 ∃*𝑦 𝑦 = 𝐵
98moani 1970 . . . . 5 ∃*𝑦(𝜑𝑦 = 𝐵)
109a1i 9 . . . 4 (𝑥 ∈ V → ∃*𝑦(𝜑𝑦 = 𝐵))
11 fvopab6.1 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}
12 vex 2560 . . . . . . 7 𝑥 ∈ V
1312biantrur 287 . . . . . 6 ((𝜑𝑦 = 𝐵) ↔ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵)))
1413opabbii 3824 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵))}
1511, 14eqtri 2060 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵))}
165, 7, 10, 15fvopab3ig 5246 . . 3 ((𝐴 ∈ V ∧ 𝐶𝑅) → (𝜓 → (𝐹𝐴) = 𝐶))
171, 16sylan 267 . 2 ((𝐴𝐷𝐶𝑅) → (𝜓 → (𝐹𝐴) = 𝐶))
18173impia 1101 1 ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  ∃*wmo 1901  Vcvv 2557  {copab 3817  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator