ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptss2 GIF version

Theorem fvmptss2 5247
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
fvmptss2.1 (𝑥 = 𝐷𝐵 = 𝐶)
fvmptss2.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptss2 (𝐹𝐷) ⊆ 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptss2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvss 5189 . 2 (∀𝑦(𝐷𝐹𝑦𝑦𝐶) → (𝐹𝐷) ⊆ 𝐶)
2 fvmptss2.2 . . . . . 6 𝐹 = (𝑥𝐴𝐵)
32funmpt2 4939 . . . . 5 Fun 𝐹
4 funrel 4919 . . . . 5 (Fun 𝐹 → Rel 𝐹)
53, 4ax-mp 7 . . . 4 Rel 𝐹
65brrelexi 4384 . . 3 (𝐷𝐹𝑦𝐷 ∈ V)
7 nfcv 2178 . . . 4 𝑥𝐷
8 nfmpt1 3850 . . . . . . 7 𝑥(𝑥𝐴𝐵)
92, 8nfcxfr 2175 . . . . . 6 𝑥𝐹
10 nfcv 2178 . . . . . 6 𝑥𝑦
117, 9, 10nfbr 3808 . . . . 5 𝑥 𝐷𝐹𝑦
12 nfv 1421 . . . . 5 𝑥 𝑦𝐶
1311, 12nfim 1464 . . . 4 𝑥(𝐷𝐹𝑦𝑦𝐶)
14 breq1 3767 . . . . 5 (𝑥 = 𝐷 → (𝑥𝐹𝑦𝐷𝐹𝑦))
15 fvmptss2.1 . . . . . 6 (𝑥 = 𝐷𝐵 = 𝐶)
1615sseq2d 2973 . . . . 5 (𝑥 = 𝐷 → (𝑦𝐵𝑦𝐶))
1714, 16imbi12d 223 . . . 4 (𝑥 = 𝐷 → ((𝑥𝐹𝑦𝑦𝐵) ↔ (𝐷𝐹𝑦𝑦𝐶)))
18 df-br 3765 . . . . 5 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
19 opabid 3994 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ (𝑥𝐴𝑦 = 𝐵))
20 eqimss 2997 . . . . . . . 8 (𝑦 = 𝐵𝑦𝐵)
2120adantl 262 . . . . . . 7 ((𝑥𝐴𝑦 = 𝐵) → 𝑦𝐵)
2219, 21sylbi 114 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} → 𝑦𝐵)
23 df-mpt 3820 . . . . . . 7 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
242, 23eqtri 2060 . . . . . 6 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2522, 24eleq2s 2132 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵)
2618, 25sylbi 114 . . . 4 (𝑥𝐹𝑦𝑦𝐵)
277, 13, 17, 26vtoclgf 2612 . . 3 (𝐷 ∈ V → (𝐷𝐹𝑦𝑦𝐶))
286, 27mpcom 32 . 2 (𝐷𝐹𝑦𝑦𝐶)
291, 28mpg 1340 1 (𝐹𝐷) ⊆ 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  Vcvv 2557  wss 2917  cop 3378   class class class wbr 3764  {copab 3817  cmpt 3818  Rel wrel 4350  Fun wfun 4896  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-iota 4867  df-fun 4904  df-fv 4910
This theorem is referenced by:  mptfvex  5256
  Copyright terms: Public domain W3C validator