ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptf GIF version

Theorem fvmptf 5263
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5248 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
fvmptf.1 𝑥𝐴
fvmptf.2 𝑥𝐶
fvmptf.3 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptf.4 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmptf ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Distinct variable group:   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptf
StepHypRef Expression
1 elex 2566 . . 3 (𝐶𝑉𝐶 ∈ V)
2 fvmptf.1 . . . 4 𝑥𝐴
3 fvmptf.2 . . . . . 6 𝑥𝐶
43nfel1 2188 . . . . 5 𝑥 𝐶 ∈ V
5 fvmptf.4 . . . . . . . 8 𝐹 = (𝑥𝐷𝐵)
6 nfmpt1 3850 . . . . . . . 8 𝑥(𝑥𝐷𝐵)
75, 6nfcxfr 2175 . . . . . . 7 𝑥𝐹
87, 2nffv 5185 . . . . . 6 𝑥(𝐹𝐴)
98, 3nfeq 2185 . . . . 5 𝑥(𝐹𝐴) = 𝐶
104, 9nfim 1464 . . . 4 𝑥(𝐶 ∈ V → (𝐹𝐴) = 𝐶)
11 fvmptf.3 . . . . . 6 (𝑥 = 𝐴𝐵 = 𝐶)
1211eleq1d 2106 . . . . 5 (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
13 fveq2 5178 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1413, 11eqeq12d 2054 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) = 𝐵 ↔ (𝐹𝐴) = 𝐶))
1512, 14imbi12d 223 . . . 4 (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹𝐴) = 𝐶)))
165fvmpt2 5254 . . . . 5 ((𝑥𝐷𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
1716ex 108 . . . 4 (𝑥𝐷 → (𝐵 ∈ V → (𝐹𝑥) = 𝐵))
182, 10, 15, 17vtoclgaf 2618 . . 3 (𝐴𝐷 → (𝐶 ∈ V → (𝐹𝐴) = 𝐶))
191, 18syl5 28 . 2 (𝐴𝐷 → (𝐶𝑉 → (𝐹𝐴) = 𝐶))
2019imp 115 1 ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  wnfc 2165  Vcvv 2557  cmpt 3818  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator