Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdm Structured version   GIF version

Theorem funiunfvdm 5294
 Description: The indexed union of a function's values is the union of its image under the index class. This theorem is a slight variation of fniunfv 5293. (Contributed by Jim Kingdon, 10-Jan-2019.)
Assertion
Ref Expression
funiunfvdm (𝐹 Fn A x A (𝐹x) = (𝐹A))
Distinct variable groups:   x,A   x,𝐹

Proof of Theorem funiunfvdm
StepHypRef Expression
1 fniunfv 5293 . 2 (𝐹 Fn A x A (𝐹x) = ran 𝐹)
2 imadmrn 4572 . . . 4 (𝐹 “ dom 𝐹) = ran 𝐹
3 fndm 4891 . . . . 5 (𝐹 Fn A → dom 𝐹 = A)
43imaeq2d 4562 . . . 4 (𝐹 Fn A → (𝐹 “ dom 𝐹) = (𝐹A))
52, 4syl5eqr 2068 . . 3 (𝐹 Fn A → ran 𝐹 = (𝐹A))
65unieqd 3543 . 2 (𝐹 Fn A ran 𝐹 = (𝐹A))
71, 6eqtrd 2054 1 (𝐹 Fn A x A (𝐹x) = (𝐹A))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1373  ∪ cuni 3532  ∪ ciun 3609  dom cdm 4238  ran crn 4239   “ cima 4241   Fn wfn 4791  ‘cfv 4796 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1315  ax-7 1316  ax-gen 1317  ax-ie1 1362  ax-ie2 1363  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-14 1387  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2004  ax-sep 3827  ax-pow 3879  ax-pr 3896 This theorem depends on definitions:  df-bi 110  df-3an 877  df-tru 1231  df-nf 1329  df-sb 1628  df-eu 1884  df-mo 1885  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2287  df-rex 2288  df-v 2535  df-sbc 2740  df-un 2900  df-in 2902  df-ss 2909  df-pw 3313  df-sn 3333  df-pr 3334  df-op 3336  df-uni 3533  df-iun 3611  df-br 3717  df-opab 3771  df-mpt 3772  df-id 3983  df-xp 4244  df-rel 4245  df-cnv 4246  df-co 4247  df-dm 4248  df-rn 4249  df-res 4250  df-ima 4251  df-iota 4761  df-fun 4798  df-fn 4799  df-fv 4804 This theorem is referenced by:  funiunfvdmf  5295  eluniimadm  5296
 Copyright terms: Public domain W3C validator