![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funimass1 | GIF version |
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.) |
Ref | Expression |
---|---|
funimass1 | ⊢ ((Fun 𝐹 ∧ A ⊆ ran 𝐹) → ((◡𝐹 “ A) ⊆ B → A ⊆ (𝐹 “ B))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imass2 4644 | . 2 ⊢ ((◡𝐹 “ A) ⊆ B → (𝐹 “ (◡𝐹 “ A)) ⊆ (𝐹 “ B)) | |
2 | funimacnv 4918 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ A)) = (A ∩ ran 𝐹)) | |
3 | dfss 2926 | . . . . . 6 ⊢ (A ⊆ ran 𝐹 ↔ A = (A ∩ ran 𝐹)) | |
4 | 3 | biimpi 113 | . . . . 5 ⊢ (A ⊆ ran 𝐹 → A = (A ∩ ran 𝐹)) |
5 | 4 | eqcomd 2042 | . . . 4 ⊢ (A ⊆ ran 𝐹 → (A ∩ ran 𝐹) = A) |
6 | 2, 5 | sylan9eq 2089 | . . 3 ⊢ ((Fun 𝐹 ∧ A ⊆ ran 𝐹) → (𝐹 “ (◡𝐹 “ A)) = A) |
7 | 6 | sseq1d 2966 | . 2 ⊢ ((Fun 𝐹 ∧ A ⊆ ran 𝐹) → ((𝐹 “ (◡𝐹 “ A)) ⊆ (𝐹 “ B) ↔ A ⊆ (𝐹 “ B))) |
8 | 1, 7 | syl5ib 143 | 1 ⊢ ((Fun 𝐹 ∧ A ⊆ ran 𝐹) → ((◡𝐹 “ A) ⊆ B → A ⊆ (𝐹 “ B))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1242 ∩ cin 2910 ⊆ wss 2911 ◡ccnv 4287 ran crn 4289 “ cima 4291 Fun wfun 4839 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-br 3756 df-opab 3810 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-rn 4299 df-res 4300 df-ima 4301 df-fun 4847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |