ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funconstss Structured version   GIF version

Theorem funconstss 5228
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
funconstss ((Fun 𝐹 A ⊆ dom 𝐹) → (x A (𝐹x) = BA ⊆ (𝐹 “ {B})))
Distinct variable groups:   x,𝐹   x,A   x,B

Proof of Theorem funconstss
StepHypRef Expression
1 funimass4 5167 . 2 ((Fun 𝐹 A ⊆ dom 𝐹) → ((𝐹A) ⊆ {B} ↔ x A (𝐹x) {B}))
2 funimass3 5226 . 2 ((Fun 𝐹 A ⊆ dom 𝐹) → ((𝐹A) ⊆ {B} ↔ A ⊆ (𝐹 “ {B})))
3 ssel2 2934 . . . . . 6 ((A ⊆ dom 𝐹 x A) → x dom 𝐹)
43anim2i 324 . . . . 5 ((Fun 𝐹 (A ⊆ dom 𝐹 x A)) → (Fun 𝐹 x dom 𝐹))
54anassrs 380 . . . 4 (((Fun 𝐹 A ⊆ dom 𝐹) x A) → (Fun 𝐹 x dom 𝐹))
6 funfvex 5135 . . . 4 ((Fun 𝐹 x dom 𝐹) → (𝐹x) V)
7 elsncg 3389 . . . 4 ((𝐹x) V → ((𝐹x) {B} ↔ (𝐹x) = B))
85, 6, 73syl 17 . . 3 (((Fun 𝐹 A ⊆ dom 𝐹) x A) → ((𝐹x) {B} ↔ (𝐹x) = B))
98ralbidva 2316 . 2 ((Fun 𝐹 A ⊆ dom 𝐹) → (x A (𝐹x) {B} ↔ x A (𝐹x) = B))
101, 2, 93bitr3rd 208 1 ((Fun 𝐹 A ⊆ dom 𝐹) → (x A (𝐹x) = BA ⊆ (𝐹 “ {B})))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242   wcel 1390  wral 2300  Vcvv 2551  wss 2911  {csn 3367  ccnv 4287  dom cdm 4288  cima 4291  Fun wfun 4839  cfv 4845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853
This theorem is referenced by:  fconst3m  5323
  Copyright terms: Public domain W3C validator