ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funco GIF version

Theorem funco 4940
Description: The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funco ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))

Proof of Theorem funco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 4601 . . . . 5 dom (𝐹𝐺) ⊆ dom 𝐺
2 funmo 4917 . . . . . . . . . 10 (Fun 𝐹 → ∃*𝑦 𝑧𝐹𝑦)
32alrimiv 1754 . . . . . . . . 9 (Fun 𝐹 → ∀𝑧∃*𝑦 𝑧𝐹𝑦)
43ralrimivw 2393 . . . . . . . 8 (Fun 𝐹 → ∀𝑥 ∈ dom 𝐺𝑧∃*𝑦 𝑧𝐹𝑦)
5 dffun8 4929 . . . . . . . . 9 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧))
65simprbi 260 . . . . . . . 8 (Fun 𝐺 → ∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧)
74, 6anim12ci 322 . . . . . . 7 ((Fun 𝐹 ∧ Fun 𝐺) → (∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑥 ∈ dom 𝐺𝑧∃*𝑦 𝑧𝐹𝑦))
8 r19.26 2441 . . . . . . 7 (∀𝑥 ∈ dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) ↔ (∀𝑥 ∈ dom 𝐺∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑥 ∈ dom 𝐺𝑧∃*𝑦 𝑧𝐹𝑦))
97, 8sylibr 137 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦))
10 nfv 1421 . . . . . . . 8 𝑦 𝑥𝐺𝑧
1110euexex 1985 . . . . . . 7 ((∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
1211ralimi 2384 . . . . . 6 (∀𝑥 ∈ dom 𝐺(∃!𝑧 𝑥𝐺𝑧 ∧ ∀𝑧∃*𝑦 𝑧𝐹𝑦) → ∀𝑥 ∈ dom 𝐺∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
139, 12syl 14 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom 𝐺∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
14 ssralv 3004 . . . . 5 (dom (𝐹𝐺) ⊆ dom 𝐺 → (∀𝑥 ∈ dom 𝐺∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦) → ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)))
151, 13, 14mpsyl 59 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
16 df-br 3765 . . . . . . 7 (𝑥(𝐹𝐺)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺))
17 df-co 4354 . . . . . . . 8 (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)}
1817eleq2i 2104 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)})
19 opabid 3994 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦)} ↔ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2016, 18, 193bitri 195 . . . . . 6 (𝑥(𝐹𝐺)𝑦 ↔ ∃𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2120mobii 1937 . . . . 5 (∃*𝑦 𝑥(𝐹𝐺)𝑦 ↔ ∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2221ralbii 2330 . . . 4 (∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦 ↔ ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦𝑧(𝑥𝐺𝑧𝑧𝐹𝑦))
2315, 22sylibr 137 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦)
24 relco 4819 . . 3 Rel (𝐹𝐺)
2523, 24jctil 295 . 2 ((Fun 𝐹 ∧ Fun 𝐺) → (Rel (𝐹𝐺) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦))
26 dffun7 4928 . 2 (Fun (𝐹𝐺) ↔ (Rel (𝐹𝐺) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∃*𝑦 𝑥(𝐹𝐺)𝑦))
2725, 26sylibr 137 1 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wal 1241  wex 1381  wcel 1393  ∃!weu 1900  ∃*wmo 1901  wral 2306  wss 2917  cop 3378   class class class wbr 3764  {copab 3817  dom cdm 4345  ccom 4349  Rel wrel 4350  Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-fun 4904
This theorem is referenced by:  fnco  5007  f1co  5101  tposfun  5875
  Copyright terms: Public domain W3C validator