Step | Hyp | Ref
| Expression |
1 | | simpr 103 |
. . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})) |
2 | | simpl3 909 |
. . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐵 ∈ 𝐴) |
3 | 1, 2 | sseldd 2946 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐵 ∈ (𝐴 ∖ {𝐵})) |
4 | | neldifsnd 3498 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → ¬ 𝐵 ∈ (𝐴 ∖ {𝐵})) |
5 | 3, 4 | pm2.65da 587 |
. 2
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐴 ⊆ (𝐴 ∖ {𝐵})) |
6 | | simplr 482 |
. . . . . 6
⊢
(((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) → 𝑥 ∈ 𝐴) |
7 | | simpll3 945 |
. . . . . . . . . 10
⊢ ((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
8 | 7 | ad2antrr 457 |
. . . . . . . . 9
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵 ∈ 𝐴) |
9 | | simplr 482 |
. . . . . . . . 9
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) |
10 | | simplr 482 |
. . . . . . . . . . 11
⊢ ((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐵𝑅𝐵) |
11 | 10 | ad2antrr 457 |
. . . . . . . . . 10
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵𝑅𝐵) |
12 | | simpr 103 |
. . . . . . . . . 10
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
13 | 11, 12 | breqtrrd 3790 |
. . . . . . . . 9
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵𝑅𝑥) |
14 | | breq1 3767 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → (𝑦𝑅𝑥 ↔ 𝐵𝑅𝑥)) |
15 | | eleq1 2100 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → (𝑦 ∈ (𝐴 ∖ {𝐵}) ↔ 𝐵 ∈ (𝐴 ∖ {𝐵}))) |
16 | 14, 15 | imbi12d 223 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → ((𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) ↔ (𝐵𝑅𝑥 → 𝐵 ∈ (𝐴 ∖ {𝐵})))) |
17 | 16 | rspcv 2652 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝐵𝑅𝑥 → 𝐵 ∈ (𝐴 ∖ {𝐵})))) |
18 | 8, 9, 13, 17 | syl3c 57 |
. . . . . . . 8
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴 ∖ {𝐵})) |
19 | | neldifsnd 3498 |
. . . . . . . 8
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → ¬ 𝐵 ∈ (𝐴 ∖ {𝐵})) |
20 | 18, 19 | pm2.65da 587 |
. . . . . . 7
⊢
(((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) → ¬ 𝑥 = 𝐵) |
21 | | velsn 3392 |
. . . . . . 7
⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) |
22 | 20, 21 | sylnibr 602 |
. . . . . 6
⊢
(((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) → ¬ 𝑥 ∈ {𝐵}) |
23 | 6, 22 | eldifd 2928 |
. . . . 5
⊢
(((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) → 𝑥 ∈ (𝐴 ∖ {𝐵})) |
24 | 23 | ex 108 |
. . . 4
⊢ ((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵}))) |
25 | 24 | ralrimiva 2392 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) → ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵}))) |
26 | | df-frind 4069 |
. . . . . . . 8
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) |
27 | | df-frfor 4068 |
. . . . . . . . 9
⊢ ( FrFor
𝑅𝐴𝑠 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠)) |
28 | 27 | albii 1359 |
. . . . . . . 8
⊢
(∀𝑠 FrFor
𝑅𝐴𝑠 ↔ ∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠)) |
29 | 26, 28 | bitri 173 |
. . . . . . 7
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠)) |
30 | 29 | biimpi 113 |
. . . . . 6
⊢ (𝑅 Fr 𝐴 → ∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠)) |
31 | 30 | 3ad2ant1 925 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠)) |
32 | | difexg 3898 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {𝐵}) ∈ V) |
33 | | eleq2 2101 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → (𝑦 ∈ 𝑠 ↔ 𝑦 ∈ (𝐴 ∖ {𝐵}))) |
34 | 33 | imbi2d 219 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → ((𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) ↔ (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})))) |
35 | 34 | ralbidv 2326 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})))) |
36 | | eleq2 2101 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → (𝑥 ∈ 𝑠 ↔ 𝑥 ∈ (𝐴 ∖ {𝐵}))) |
37 | 35, 36 | imbi12d 223 |
. . . . . . . . . 10
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) ↔ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})))) |
38 | 37 | ralbidv 2326 |
. . . . . . . . 9
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})))) |
39 | | sseq2 2967 |
. . . . . . . . 9
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → (𝐴 ⊆ 𝑠 ↔ 𝐴 ⊆ (𝐴 ∖ {𝐵}))) |
40 | 38, 39 | imbi12d 223 |
. . . . . . . 8
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → ((∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠) ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))) |
41 | 40 | spcgv 2640 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ∈ V → (∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))) |
42 | 32, 41 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))) |
43 | 42 | 3ad2ant2 926 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → (∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))) |
44 | 31, 43 | mpd 13 |
. . . 4
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))) |
45 | 44 | adantr 261 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))) |
46 | 25, 45 | mpd 13 |
. 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) → 𝐴 ⊆ (𝐴 ∖ {𝐵})) |
47 | 5, 46 | mtand 591 |
1
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |