ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fornex GIF version

Theorem fornex 5742
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
fornex (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))

Proof of Theorem fornex
StepHypRef Expression
1 fofun 5107 . . . 4 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funrnex 5741 . . . 4 (dom 𝐹𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V))
31, 2syl5com 26 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶 → ran 𝐹 ∈ V))
4 fof 5106 . . . . 5 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
5 fdm 5050 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
64, 5syl 14 . . . 4 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
76eleq1d 2106 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶𝐴𝐶))
8 forn 5109 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
98eleq1d 2106 . . 3 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
103, 7, 93imtr3d 191 . 2 (𝐹:𝐴onto𝐵 → (𝐴𝐶𝐵 ∈ V))
1110com12 27 1 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wcel 1393  Vcvv 2557  dom cdm 4345  ran crn 4346  Fun wfun 4896  wf 4898  ontowfo 4900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910
This theorem is referenced by:  f1dmex  5743  f1oeng  6237
  Copyright terms: Public domain W3C validator