ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo00 GIF version

Theorem fo00 5162
Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
fo00 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem fo00
StepHypRef Expression
1 fofn 5108 . . . . . 6 (𝐹:∅–onto𝐴𝐹 Fn ∅)
2 fn0 5018 . . . . . . 7 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
3 f10 5160 . . . . . . . 8 ∅:∅–1-1𝐴
4 f1eq1 5087 . . . . . . . 8 (𝐹 = ∅ → (𝐹:∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
53, 4mpbiri 157 . . . . . . 7 (𝐹 = ∅ → 𝐹:∅–1-1𝐴)
62, 5sylbi 114 . . . . . 6 (𝐹 Fn ∅ → 𝐹:∅–1-1𝐴)
71, 6syl 14 . . . . 5 (𝐹:∅–onto𝐴𝐹:∅–1-1𝐴)
87ancri 307 . . . 4 (𝐹:∅–onto𝐴 → (𝐹:∅–1-1𝐴𝐹:∅–onto𝐴))
9 df-f1o 4909 . . . 4 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹:∅–1-1𝐴𝐹:∅–onto𝐴))
108, 9sylibr 137 . . 3 (𝐹:∅–onto𝐴𝐹:∅–1-1-onto𝐴)
11 f1ofo 5133 . . 3 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
1210, 11impbii 117 . 2 (𝐹:∅–onto𝐴𝐹:∅–1-1-onto𝐴)
13 f1o00 5161 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
1412, 13bitri 173 1 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98   = wceq 1243  c0 3224   Fn wfn 4897  1-1wf1 4899  ontowfo 4900  1-1-ontowf1o 4901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator